Multivariate Statistical Analysis

Nusrat Jahan
Mathematics \& Statistics James Madison University

Multivariate Statistical Analysis

〇"Multivariate data" means multiple outcome variables measured on the same individual or object.
©"Multivariate analysis" is the analysis where multiple variables are statistically analyzed simultaneously.
© Multivariate analysis is needed to get an overall picture.

Example of Multivariate data

Vocational interests of 231 undergraduate students. The 22 interest areas are:
© X_{1} : Public speaking
O X_{2} : Law and politics
(O) X_{3} : Business management
© X_{4} : Sales
O X_{5} : Merchandising
© X_{6} : Office practice
O X_{7} : Military activities
© X_{8} : Technical supervision
© X_{g} : Mathematics
© X_{10} : Science
O X_{11} : Mechanical
X_{12} : Nature
X_{13} : Agriculture
X_{14} : Adventure
X_{15} : Recreational leadership
X_{16} : Medical service
X_{17} : Social service
X_{18} : Religious activities
X_{19} : Teaching
X_{20} : Music
X_{21} : Art
X_{22} : Writing

Why, When, and How?

- Why use multivariate methods?

םSimultaneous analysis of multiple response variables
-When to use multivariate methods?
-Response variables are related, an overall picture needs input from most of the variables

- How to use multivariate methods?
-Computer packages: SAS, SPSS, R, etc.

Goals of multivariate analysis:

-Description

- Summarization
-Simplification
- Grouping - both cases and variables
-Relationships - among variables, among cases
-To detect strange or unusual aspects of the data
-To create new variables (dimension reduction)
-To suggest additional analyses

Multivariate Procedures

DPrincipal Component Analysis
DFactor Analysis
Canonical Correlation Analysis

Individual directed

Discriminant Analysis Cluster Analysis
Hotelling's T^{2} Tests
Multivariate Analysis of Variance (MANOVA)

Variable Directed Methods:

 Analysis of Variables```
Principal component analysis
 Factor analysis
Canonical correlation analysis*
```

- Creates a new set of synthetic variables (factors) that can summarize the original set
- Mathematics is used to create these factors so that only a few can capture the maximum variance of the original variables
- How many 'new' variables to consider in the analysis - a trade off between \% of variance explained and complexity of analysis
- Multiple dependent variables are predicted by independent variables*


## Principal Component Analysis (PCA) of Vocation data

- Factor1: Business management, Merchandizing, Sales, Office practice, Technical supervision.

Label: Business?

- Factor2: Music, Art, Writing.

Label: Creativity?

- Factor3: Social service, Religious activities, service Label: Service?


## Individual Directed Methods: Groupings of Individuals, Objects <br> Discriminant analysis <br> Cluster analysis <br> Hotelling's T² tests <br> MANOVA

$\square$ Separates distinct sets of objects, allocates new objects to predefined groups
$\square$ Discriminatory procedure, classification rules are used for separation \& allocation
$\square$ Objects within a group are similar, between groups they are dissimilar
$\square$ Misclassification could be a potential problem

## Example: Fisher's Iris data

- 150 sets of measurements are available on 3 varieties of Iris:
$\square$ Variety 1: Iris setosa
$\square$ Variety 2: Iris versicolor
$\square$ Variety 3: Iris virginica
Number of variables: 4
Number of objects: 150
Goal: Can we classify these 150 obs. Into 3 major groups

Discrimination/classification rules based on :
Sepal length, Sepal width, Petal length, Petal width

Fisher (1936) Iris Data


## Four Types of Research Questions:

$\square$ Degree of relationship between the variables

- Bivariate correlation \& regression (multiple, \& multivariate/canonical)
$\square$ Measure significant differences between group means
- Hotelling's $T^{2}$ tests, MANOVA
$\square$ Predicting membership into groups

Explaining underlying structure

Cluster Analysis of Fisher (1936) Iris Data


## After Multivariate Analysis ...

-Multivariate analysis is an exploratory analysis:
$\square$ suggests additional analysis regression, ANOVA etc. of the factors
$\square$ generates hypothesis regarding factors
$\square$
Most research articles report multivariate analysis result very briefly, mainly reports the univariate results obtained on the factors.

## Principal Component Analysis of the Vocation data

## How many new variables to consider in a PCA?

Eigenvalues of the Correlation Matrix:
Total = 22 Average $=1$

|  | Eigenvalue | Difference | Proportion | Cumulative |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 5.59637727 | 2.11784592 | 0.2544 | 0.2544 |
| 2 | 3.47853135 | 0.85459327 | 0.1581 | 0.4125 |
| 3 | 2.62393808 | 0.74258975 | 0.1193 | 0.5318 |
| 4 | 1.88134833 | 0.59339867 | 0.0855 | 0.6173 |
| 5 | 1.28794966 | 0.07117677 | 0.0585 | 0.6758 |
| 6 | 1.21677289 | 0.27185782 | 0.0553 | 0.7311 |
| 7 | 0.94491507 | 0.28304545 | 0.043 | 0.7741 |
|  |  |  |  |  |

## PCA SAS output of Vocation data

| Rotated Factor Pattern (Method = Varimax) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Factor1 | Factor2 | Factor3 | Factor4 | Factor5 | Factor6 |
| x1 | 0.49593 | 0.26395 | 0.34243 | -0.16506 | -0.05825 | 0.57486 |
| x2 | 0.4263 | 0.02462 | 0.31505 | -0.11918 | -0.22047 | 0.63547 |
| x3 | 0.92687 | -0.03452 | 0.07002 | 0.02739 | 0.00679 | 0.15176 |
| x4 | 0.82476 | 0.07037 | 0.13096 | -0.02887 | 0.03365 | 0.18179 |
| x5 | 0.93212 | 0.052 | 0.06303 | -0.0098 | 0.03826 | 0.15286 |
| x6 | 0.82525 | -0.18738 | 0.18875 | 0.13444 | -0.05584 | -0.13369 |
| x7 | 0.27137 | -0.45726 | 0.29634 | 0.19806 | 0.31886 | 0.07984 |
| x8 | 0.82355 | -0.12223 | -0.00732 | 0.16405 | 0.12326 | 0.02939 |
| x9 | 0.0963 | -0.04386 | -0.16168 | 0.74606 | -0.16586 | 0.01498 |
| x10 | -0.09477 | 0.1135 | 0.13732 | 0.86711 | 0.11228 | -0.02805 |
| x11 | 0.26124 | -0.00669 | -0.02198 | 0.76353 | 0.29515 | -0.02148 |
| x12 | -0.00083 | 0.28163 | 0.30364 | 0.20299 | 0.79111 | -0.01815 |
| x13 | 0.03647 | -0.01018 | 0.03488 | -0.03942 | 0.91429 | 0.12708 |
| x14 | 0.04897 | -0.05288 | -0.21468 | 0.20696 | 0.33933 | 0.72413 |
| x15 | 0.13505 | -0.48547 | 0.2191 | -0.03235 | 0.33238 | 0.44523 |
| x16 | -0.03802 | 0.08915 | 0.46815 | 0.45384 | -0.01023 | 0.3177 |
| x17 | 0.03511 | 0.12905 | 0.79281 | -0.15898 | 0.00646 | 0.18413 |
| $\times 18$ | 0.16134 | 0.11188 | 0.69522 | 0.05285 | 0.19387 | -0.0634 |
| x19 | 0.28981 | 0.28494 | 0.64497 | 0.07068 | 0.1356 | -0.0486 |
| x20 | 0.00316 | 0.82271 | 0.29615 | 0.15561 | 0.02057 | -0.05548 |
| x21 | -0.04609 | 0.83575 | 0.18874 | 0.13052 | 0.24476 | 0.01156 |
| x22 | 0.02158 | 0.68814 | 0.35576 | -0.21847 | 0.09917 | 0.29232 |

