Multivariate Statistical Analysis

Nusrat Jahan Mathematics & Statistics James Madison University

Multivariate Statistical Analysis

• Multivariate data" means multiple outcome variables measured on the same individual or object.

• Multivariate analysis" is the analysis where multiple variables are statistically analyzed simultaneously.

Oultivariate analysis is needed to get an overall picture.

Example of Multivariate data

Vocational interests of 231 undergraduate students. The 22 interest areas are:

- X_1 : Public speaking
- X_2^{-} : Law and politics
- X_3^- : Business management
- X_4 : Sales
- X_5 : Merchandising
- X_6 : Office practice
- X_7 : Military activities
- X_8 : Technical supervision
- X_9 : Mathematics
- X_{10} : Science
- \odot X₁₁: Mechanical

X₁₂: Nature X₁₃: Agriculture X₁₄: Adventure X₁₅: Recreational leadership X₁₆: Medical service X₁₇: Social service X₁₈: Religious activities X₁₉: Teaching X₂₀: Music X₂₁: Art X₂₂: Writing

Why, When, and How?

Why use multivariate methods?
 Simultaneous analysis of multiple response variables

• When to use multivariate methods?

 Response variables are related, an overall picture needs input from most of the variables

• How to use multivariate methods?

□ Computer packages: SAS, SPSS, R, etc.

Goals of multivariate analysis:

- Description
- Summarization
- Simplification
- •Grouping both cases and variables
- •Relationships among variables, among cases
- To detect strange or unusual aspects of the data
- •To create new variables (dimension reduction)
- To suggest additional analyses

Multivariate Procedures

Principal Component Analysis
 Factor Analysis
 Canonical Correlation Analysis

Discriminant Analysis Cluster Analysis Hotelling's T² Tests Multivariate Analysis of Variance (MANOVA)

Individual directed

Variable Directed Methods: Analysis of Variables

> Principal component analysis Factor analysis Canonical correlation analysis*

- Creates a new set of synthetic variables (factors) that can summarize the original set
- Mathematics is used to create these factors so that only a few can capture the maximum variance of the original variables
- How many 'new' variables to consider in the analysis a trade off between % of variance explained and complexity of analysis
- Multiple dependent variables are predicted by independent variables*

Principal Component Analysis (PCA) of Vocation data

• Factor1: Business management, Merchandizing, Sales, Office practice, Technical supervision. Label: *Business?*

• Factor2: Music, Art, Writing. Label: Creativity?

• Factor3: Social service, Religious activities, service Label: Service?

Discriminant analysis Cluster analysis Hotelling's T² tests MANOVA

Separates distinct sets of objects, allocates new objects to predefined groups

Discriminatory procedure, classification rules are used for separation & allocation

Objects within a group are similar, between groups they are dissimilar

□ Misclassification could be a potential problem

Example: Fisher's Iris data

• 150 sets of measurements are available on 3 varieties of *Iris*:

Variety 1: Iris setosa
Variety 2: Iris versicolor
Variety 3: Iris virginica

Number of variables: 4

Number of objects: 150

Goal: Can we classify these 150 obs. Into 3 major groups

Discrimination/classification rules based on :

Sepal length, Sepal width, Petal length, Petal width

Fisher (1936) Iris Data

Four Types of Research Questions:

Degree of relationship between the variables

- Bivariate correlation & regression (multiple, & multivariate/canonical)
- Measure significant differences between group means
 - Hotelling's T² tests, MANOVA
- Predicting membership into groups

DExplaining underlying structure

After Multivariate Analysis ...

• Multivariate analysis is an exploratory analysis:

 suggests additional analysis – regression, ANOVA etc. of the factors
 generates hypothesis regarding factors

Most research articles report multivariate analysis result very briefly, mainly reports the univariate results obtained on the factors.

Principal Component Analysis of the Vocation data

How many new variables to consider in a PCA?

Eigenvalues of the Correlation Matrix:

Total = 22 Average = 1

	Eigenvalue	Difference	Proportion	<u>Cumulative</u>	
1	5.59637727	2.11784592	0.2544	0.2544	
2	3.47853135	0.85459327	0.1581	0.4125	
3	2.62393808	0.74258975	0.1193	0.5318	
4	1.88134833	0.59339867	0.0855	0.6173	
5	1.28794966	0.07117677	0.0585	0.6758	
6	1.21677289	0.27185782	0.0553	0.7311	
7	0.94491507	0.28304545	0.043	0.7741	

PCA SAS output of Vocation data

	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
x1	0.49593	0.26395	0.34243	-0.16506	-0.05825	0.57486
x2	0.4263	0.02462	0.31505	-0.11918	-0.22047	0.63547
x3	0.92687	-0.03452	0.07002	0.02739	0.00679	0.15176
x4	0.82476	0.07037	0.13096	-0.02887	0.03365	0.18179
x5	0.93212	0.052	0.06303	-0.0098	0.03826	0.15286
x6	0.82525	-0.18738	0.18875	0.13444	-0.05584	-0.13369
x7	0.27137	-0.45726	0.29634	0.19806	0.31886	0.07984
x8	0.82355	-0.12223	-0.00732	0.16405	0.12326	0.02939
x9	0.0963	-0.04386	-0.16168	0.74606	-0.16586	0.01498
x10	-0.09477	0.1135	0.13732	0.86711	0.11228	-0.02805
x11	0.26124	-0.00669	-0.02198	0.76353	0.29515	-0.02148
x12	-0.00083	0.28163	0.30364	0.20299	0.79111	-0.01815
x13	0.03647	-0.01018	0.03488	-0.03942	0.91429	0.12708
x14	0.04897	-0.05288	-0.21468	0.20696	0.33933	0.72413
	0.43505	0 405 47	0.2101	0 02225	0 22220	0.44522
x15	0.13505	-0.48547	0.2191	-0.03235	0.33238	0.44523
x16	-0.03802	0.08915	0.46815	0.45384	-0.01023	0.3177
X10	-0.05802	0.06915	0.40615	0.45564	-0.01025	0.5177
x17	0.03511	0.12905	0.79281	-0.15898	0.00646	0.18413
X17	0.05511	0.12903	0.75281	-0.13858	0.00040	0.10415
x18	0.16134	0.11188	0.69522	0.05285	0.19387	-0.0634
XIO	0.10134	0.11100	0.05522	0.05205	0.15507	0.0034
x19	0.28981	0.28494	0.64497	0.07068	0.1356	-0.0486
A15	0120301	0120101		0107000	012000	
x20	0.00316	0.82271	0.29615	0.15561	0.02057	-0.05548
x21	-0.04609	0.83575	0.18874	0.13052	0.24476	0.01156
x22	0.02158	0.68814	0.35576	-0.21847	0.09917	0.29232